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Abstract

The developments of nucleic acid-based testing have been necessitated by 
newer approaches to therapy and disease diagnosis through techniques involving 
genetic analysis. This has been achieved by the introduction of molecular 
diagnostic techniques that target the biosynthesis interactions between specific 
biomolecules such as DNA, RNA and proteins. These molecular diagnostic 
techniques include molecular cloning, macromolecule blotting and probing, gel 
electrophoresis, polymerase chain reaction, fluorescent in situ hybridization, 
spectral karyotyping imaging and DNA microarrays. These techniques have 
been applied in cases of prenatal tests, and diagnoses of infectious diseases 
and cancer. In situations of disease risk management, modern techniques in 
clinical diagnosis including molecular techniques have been applied. However, 
molecular diagnostics are rapid but are very expensive to install, hence the 
costs of health care should be considered alongside their potential advantages. 
Also, well-controlled outcome studies have been essential in demonstrating 
the efficacy of these technologies. In conclusion, the application of molecular 
diagnostics has advanced the practice of medicine with enhanced management 
and follow-up studies of comparative clinical (medical and surgical) cases.  
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Introduction
The application of nucleic acid-based testing 

to disease diagnosis and therapy at high accuracy 
and reduced cost offers revolutionary progress in 
human and animal genomics and this has altered 
the fundamental of medicine [37,58,77]. Previously, 
the analysis of deoxyribonucleic acid (DNA) by 
biochemists was difficult due to its minute structure 
until the early 1970s [2,79]. Also, the examination 
of nucleotides sequences that formed the genetic 
material of organism was only possible indirectly 
through protein or ribonucleic acid (RNA) 
sequencing [23,124] or by genetic analysis [95]. 
However, other approaches involving the direct 
analysis of DNA  [95], isolation of specific regions 
of genomes and conscious manipulation of genes 
in genetic engineering [40,118] and recombinant 
DNA technology  [42,74] have been developed. 

Molecular biology is the molecular basis of 
biological activity between biomolecules in the 
various cellular systems of the body. Biological 
activities in the body include biosynthesis of 

DNA, RNA and proteins, the interactions between these molecules 
and the regulations of their interactions [42,63]. Molecular diagnostics 
on the other hand are collections of techniques used in the analysis of 
biological markers in the genome and proteome by applying molecular 
biology to medical testing [84,103]. These techniques have been reported 
to be vital in the diagnosis of inherited genetic diseases such as cystic 
fibrosis [92] and haemochromatosis [83], infectious diseases [18], 
oncology [111], leukocyte antigen typing (investigation and prediction 
of immune function) [22,33,64] and coagulopathies [10] as well as in 
pharmacogenomics (the genetic prediction of which drugs will work 
best) [81]. Molecular diagnostics therefore provides relevant preliminary 
information for the successful application of gene therapy [21,58], biologic 
response modifiers [76,40], the assessment of disease prognosis [52] and 
therapy response as well as detection of minimal residual disease [73]. 
Hence, this paper provides a summary of the history, various types and 
applications of commonly utilized molecular diagnostic techniques in 
biological sciences.

Brief History of Molecular Diagnostic Techniques

The field of molecular biology and its clinical application grew in 
the late twentieth century [59,42]. In 1980, prenatal genetic test for 
Thalassemia was suggested and this test relied on restriction enzymes 
(endonucleases such as BamHI) that cut DNA. This test allowed for the 
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recognition of specific short sequences, created by different 
lengths of DNA strands dependent on the allele (variant form 
of the gene) [55]. In the 1980s, phrases used in the names of 
companies involved in developing these techniques included 
Molecular Diagnostics Incorporated [25], Bethseda Research 
Laboratories Molecular Diagnostics [57,82] etc.

In the 1990s, a distinct field of molecular and genomic 
laboratory medicine was developed following the identification 
of newly discovered genes and new techniques for DNA 
sequencing [7,50,117,71,72,31]. In 1995, the Association for 
Molecular Pathology (AMP) was formed to follow up on the 
new discoveries which led to establishment of The Journal 
of Medical Diagnostics in 1999 [31]. The Expert Reviews in 
The Journal of Medical Diagnostics was launched in 2001 
by Informa Healthcare [84]. Later in 2002, information 
regarding recurrence of one-letter genetic differences (the 
single nucleotide polymorphisms) in human population as 
well as their relationship with the disease was accumulated 
and published by the HapMap Project [42]. In 2012, molecular 
diagnostic techniques for Thalassemia use genetic hybridization 
tests to identify the specific single nucleotide polymorphism 
causing an individual’s disease [6].

However, the importance of commercial application of 
molecular diagnostics has created debate about patenting of 
the genetic discoveries at its heart [59]. In 1998, the European 
Union’s Directive 98/44/EC clarified that patents on DNA 
sequences were allowable [90]. In 2010 in the US, AMP sued 
Myriad Genetics to challenge the latter’s patents regarding two 
genes, BRCA1and BRCA2, which are associated with breast 
cancer [13]. In 2013, the U.S. Supreme Court partially agreed, 
ruling that a naturally occurring gene sequence could not be 
patented [86]. With advancement in molecular diagnostics, the 
detection of specific nucleotide sequences in DNA and RNA 
related or unrelated to disease has been made possible [31]. 
These nucleotide sequences may be due to changes such as 
gene rearrangements, insertion and deletion [71,72,90]. This 
therefore has led to the efficiency, accuracy and rapid growth 
in diagnostic with accentuation of personalized therapy [94].

Molecular Diagnostic Techniques

Molecular Cloning

 In molecular biology, molecular cloning has been used 
as a basic tool to highlight the functions of proteins (Souii et 
al., 2013) [94]. In this technique, DNA coding for a protein of 
interest is cloned (using PCR and/or restriction enzymes) into 
a plasmid (known as an expression vector) [113,5]. A vector 
has 3 distinctive features: an origin of replication, a multiple 

cloning site (MCS), and a selective marker (usually antibiotic 
resistance) [26,5]. The origin of replication has promoter 
regions upstream from the replication/transcription start site 
[125,5].

This plasmid can be inserted into either bacterial or 
animal cells [113]. Introducing DNA into bacterial cells can 
be done by transformation (via uptake of naked DNA) [30], 
conjugation (via cell-cell contact) [27] or by transduction (via 
viral vector) [48]. Introducing DNA into eukaryotic cells, 
such as animal cells, by physical or chemical means is called 
transfection [41,121]. Several transfection techniques are 
available and these include calcium phosphate transfection, 
electroporation, microinjection and liposome transfection. 
DNA can also be introduced into eukaryotic cells using viruses 
or bacteria (Agrobacterium tumefaciens) as carriers; the latter 
is sometimes called bactofection  [113]. The plasmid may be 
integrated into the genome, resulting in a stable transfection, 
or may remain independent of the genome and this is referred 
to as transient transfection [108]. In either case, DNA coding 
for a protein of interest is inside the cell, and the protein can be 
expressed [120,41]. 

In molecular cloning, a variety of systems including inducible 
promoters and specific cell-signaling factors, are available to help 
express the protein of interest at high levels [113]. Large quantities 
of a protein can then be extracted from the bacterial or eukaryotic 
cell [15]. Following extraction is the test for enzymatic activities 
after which the protein is crystallized to study its tertiary structure 
as well as the activity of new drugs against it [29].

Macromolecule Blotting and Probing

“Blotting,” is a term that refers to the process of detecting the 
presence and quantity of DNA, RNA, or protein in cells  [100]. 
The blotting and probing techniques were first described by Edwin 
Southern (1973) for the hybridisation of blotted DNA [100]. In 
1984, Patricia Thomas developed the RNA blot and this became 
known as the northern blot [98]. Further modifications and 
combinations of these protocols gave rise to other techniques such 
as southwesterns (protein-DNA hybridizations), northwesterns 
(to detect protein-RNA interactions) and farwesterns (protein-
protein interactions), as reported in literature [98].

Northern blotting: In the northern blotting, the structure and 
quantity of RNA are emphasized in relation to their expression 
patterns among different samples of RNA [107]. It is one of the most 
basic tools for determining the time, levels and conditions certain 
genes are expressed in living tissues [25]. The protocol involves 
using a combination of denaturing RNA gel electrophoresis and 
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a blot [107]. In this technique, RNAs are separated based on size. 
The separated RNAs are then transferred to a membrane probed 
with a labeled complement of a sequence of interest [110]. The 
results visualized in the establishment of bands represent the sizes 
of the RNA detected while the intensity of these bands is related 
to the amount of the target RNA in the samples analyzed [107]. 
The procedure is commonly used to study when and how much 
gene expression is occurring by measuring the quantity of RNAs 
present in different samples [107,110]. The major disadvantages 
of the northern blot technique were its poor sensitivity and 
high time consumption due to the use of the traditional DNA 
oligonucleotide probes [110]. These have been overcome by 
adoption of an improvised protocol of miRNA analysis involving 
RNA extraction, polyacrylamide gel electrophoresis with northern 
blotting, and the detection of locked nucleic acid (LNA)-modified 
oligonucleotide probes by hybridization [110]. 

Western blotting: In western blotting, the detection of proteins 
is first carried out followed by separation based on size and 
molecular weight using a thin gel sandwiched between two 
glass plates [115]. This technique is referred to as sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) [115,2,8]. The proteins in the gel are then transferred 
to a support membrane probed with solutions of enzymes-
labeled antibodies [115]. These support membranes include 
polyvinylidene fluoride (PVDF), nitrocellulose, nylon e.t.c [8]. 
The specificity of antibodies-protein binding is visualized by 
a colored product (chemiluminescence) or autoradiography 
[115]. However, the use of western blotting techniques allows 
for not only detection but also quantitative analysis [2,56,8].

Eastern blotting: The Eastern blotting technique is a 
modification of western blot involving the enzymatic detection 
of post-translational proteins [98]. The proteins blotted on 
to the PVDF or nitrocellulose membranes are probed for 
modifications using specific substrates [9].

Gel Electrophoresis

Gel electrophoresis is one of the basic tools of molecular 
biology [115]. The term “electrophoresis” was originally meant 
to refer to the migration of charged molecular particles in an 
electrical field, especially across a membrane [17]. However, 
the migration of lower molecular weight substances in 
stabilized media such as gels and powders has been referred 
to as “ionophoresis” [99]. The basic principle is that by means 
of an electric field and size, DNA, RNA, and proteins can all 
be separated (Weber and Osborn, 1969) [115]. In agarose gel 
electrophoresis, DNA and RNA are separated on the basis of 
size by running the substances through an electrically charged 

agarose gel [43,17].   

Polymerase Chain Reaction

Polymerase Chain Reaction (PCR) is a revolutionary 
method developed in 1983 by Kary Mullis (Kellenberger, 2004) 
[59]. PCR has proved to be a valuable method and remained 
the most frequently used molecular technique in molecular 
pathology laboratories [73] and it is an extremely versatile 
technique for copying DNA with the aid of DNA polymerase 
[37,24,75]. In this technique, the predetermined copying or 
modification of a specific DNA sequence and identification 
of particular DNA fragment in a cDNA library is enhanced 
by DNA polymerase enzyme, which amplifies the specific 
fragments of the target DNA molecule added to the reaction 
[24,19]. These nucleotides are named as primers and contain 
the sequences complementary to the target sequences of the 
target DNA molecule [2]. The PCR technique can also be 
used to introduce restriction enzyme sites to ends of DNA 
molecules, or to change particular bases of DNA (referred to 
as site-directed mutagenesis) [43]. The sequence of reactions 
in PCR is extremely powerful such that amplification of a DNA 
molecule produces about 1 billion molecules under a short 
period of time (less than 2 hours) as the reaction is done under 
perfect conditions [2,24]. 

PCR has variations such as reverse transcription PCR (RT-
PCR) for amplification of RNA and quantitative PCR which 
allow for quantitative measurement of DNA or RNA molecules 
[24]. Multiple copies of a targeted chimeric gene can be 
obtained by using a pair of priming complementary sequences 
(oligonucleotide primers) together with unique heat-resistant 
polymerases (DNA copying enzymes) [35]. The Multiplex PCR 
(mPCR) which is employed for the simultaneous identification 
of several gene sequences belonging to the same pathogen or 
originating from a mixture of different pathogens [106].

 Each PCR cycle involves 3 basic steps: denaturing, annealing 
(or hybridization), and polymerization [43,24]. During 
denaturing, the 2 strands of the helix of the target genetic 
(DNA) material are unwound and separated by heating at 90° 
to 95°C. During annealing, there is binding of oligonucleotide 
primers to their complementary bases on the single-stranded 
DNA. This step requires a much cooler temperature, 55°C. 
Finally, during polymerization (at 72 to 75°C), the template 
strand is read by polymerase and is paired rapidly with the 
appropriate nucleotides, resulting in 2 new helices consisting 
of part of the original strand and the complementary strand 
that was just assembled [24,75]. The process is repeated 
30 to 40 times, with doubling of the amount of the targeted 
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genetic material in each cycle. At the end of the procedure, 
multiple identical copies (in millions) of the original specific 
DNA sequence would be produced. The copies are expected 
to migrate concurrently when subjected to electrophoresis to 
form a single band due to their similarities in electrical charge 
and molecular weight [53,24].

The specificity of a PCR assay is determined by the 
target DNA sequence under evaluation, the sequence of 
the oligonucleotide probe, similar sequences that may exist 
elsewhere in nature and the intentions of the assay designer 
[35]. Alternative amplification methods in existence include 
Loop Mediated Isothermal Amplification (LAMP) [101], Low-
Stringency Single-Specific-Primer (LSSCP) (Mohamed, 2012), 
Ligase Detection Reaction (LDR) [20], Ligase Chain Reaction 
(LCR) [116] and Single Stand Conformation Polymorphism 
(SSCP) [60].

Fluorescent in Situ Hybridization

Fluorescent In Situ Hybridization (FISH) was developed 
by biomedical researchers in the 1980s, and is based on the 
use of fluorescence-labeled oligonucleotide probes [37,75] 
that specifically attach to their complementary DNA sequence 
target on the genome and the region is labeled with fluorescence 
color (e.g., Texas red, FITCI green, acridine orange) [61,35]. 
The labeled region can then be visualized under a fluorescence 
microscope (Amann and Fuchs, 2008) [3]. There are 3 types of 
probes in wide use:

•	 Painting probes: through the attaching of the painting 
probe to overlapping sequences on target chromosome 
(e.g., chromosome 17), the chromosome is identified as 
“painting” based on the chosen fluorescence color [61,60].

•	 Centromeric probes that identify the centromeric region 
of a specific chromosome and thus help in enumerating 
the number of copies of that chromosome even in a non-
dividing cell interphase state) [61].

•	 Allele-specific probes that adhere to a specific target allele 
sequence such as the p53 tumor suppressor gene or the 
HER2/neu oncogene (George et al., 2003; Gary, 2007; 
Bernasconi, 2008) [37,35,12].

FISH offers great advantages over conventional cytogenetics 
in the study of chromosomal deletions and translocations, and 
gene amplifications [66,67,103]. Conventional cytogenetics 
requires a time-consuming cell culture step and can be 
performed only with fresh tissue samples (Trask, 1991) [104]. 
FISH is fast and sensitive and could be used as a complementary 
tool in genetic diagnostics as it can be performed on cells in 

dividing (metaphase) and resting (interphase) stages, fresh 
frozen tissues as well as archival cytologic smears or paraffin-
embedded tissue sections [37,46,103]. This also allows FISH to 
be utilized in the differentiation of signals from cells in healthy 
and cancerous conditions as well as in the enhancement of 
“interphase cytogenetics” in both tumor and prenatal settings 
[105,3].

FISH is often used in interpretation of numerical and 
complex chromosome aberrations and the evaluation of 
HER2/neu oncogene amplification in breast carcinoma and for 
detection of different translocations in chronic myelogenous 
leukemia and acute myelogenous leukemia [35,80,103].

Spectral Karyotyping Imaging

Spectral Karyotyping Imaging (SKI) is a cytogenetic 
technique, developed by [89], and it combined the two basic 
principles of FISH which are chromosome painting and 
multicolor fluorescence [105,80]. This involves the use of 24 
sets of chromosome-specific “painting” probes [11,36,39]. 
SKI is based on the labeling of each probe with varying 
proportions of five fluorochromes, differently combined 
for each specific chromosome in a light of unique spectral 
emission [37]. This enables the display and identification 
of all 24 human chromosomes [47] assigned in different 
colours in a single metaphase, by using a combination of 
probe labelling, fluorescence microscopy, spectroscopy, CCD-
imaging and spectral image analysis without prior knowledge 
of abnormalities involved [3,36,39]. 

This technology allows the use of an “interferometer” 
similar to those used by astronomers for differentiating light 
spectra emitted by different stars [37]. The slight variations 
in color, undetectable by the human eye, are detected by 
this computerized device. This then reassigns an easy-to-
distinguish visual color (classification color) to each pair of 
chromosomes [36]. The benefits of this approach include 
the accurate analysis of abnormal karyotypes (numerical 
chromosome abnormalities) [62,39], unresolved by 
conventional cytogenetics and the ability to identify cryptic 
translocations in apparently ‘normal’ karyotypes (shifting in 
colored chromosomal portions) [36,47]. SKI is also used on 
dividing cells in metaphase thus, complementing conventional 
cytogenetics [114,39,49]. Furthermore, complex translocations 
occurring in tumor cells (e.g., breast cancer cells) can be 
resolved by SKI, leading to analysis of “marker chromosomes” 
composed of an amalgam of fragments from different 
chromosomes [36].

Despite the analytical importance of SKI, the following 
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limitations have been reported:

•	 Structural abnormalities, such as inversion, deletion, 
insertion, and duplication in the same chromosome 
are shown with the same color thus, impossible to 
evaluate [36].

•	 Also, the Q-positive segment and the satellite region of 
the long arm of the Y chromosome near the centromere 
cannot be detected [36].

•	 The resolution limit of detection is approximately 1-2 
Mb, similar to conventional chromosome painting 
techniques, and minor structural abnormalities of 
less than 1 band cannot be detected [11]. Therefore, 
verification of chromosomal breakage site requires the 
use of SKI beforehand in combination with G-banding 
or high-resolution chromosome banding, instead 
of using SKI alone to macroscopically observe the 
banding patterns [119].

Moreover, the development of spectral color banding 
technique has overcome the limitations of SKI [54,51] and this 
technique combine G-band differential staining with the SKI 
coloring technology. The widespread clinical use of SKI in the 
field of clinical genetics has made significant contributions in 
molecular diagnosis of disorders but the cost of this technique 
still remains a drawback [36].

DNA Microarrays

Microarray refers to a small, two-dimensional high density 
matrix of DNA fragments which are printed or synthesized 
on a glass or silicon slide (chip) in a specific order [106]. 
DNA microarrays can be utilized for gene expression and 
simultaneous assessment of the expression rate of multiple 
genes in a particular sample [88,93]. The 2 types of DNA 
microarrays that are widely used are cDNA microarrays and 
oligonucleotide/DNA chips [34,38,106].

In cDNA microarrays, DNA sequences complementary 
to arrays of mRNA from multiple genes are mechanically 
placed on a single glass slide [51]. This is followed by specific 
attachment of the immobilized cDNA sequences serving as 
anchoring probes to which mRNA are extracted from the 
tested sample during hybridization [88]. The tagging of the 
tested mRNA with a fluorescent dye produces fluorescence 
at each anchoring probe location, the intensity of which is 
proportional to the amount of mRNA (expression degree) of 
the gene at that location [65]. A microarray reader normally 
displays the intensity of fluorescence at each cDNA location as a 
colored dot per gene location on a grid [37]. This computerized 

reader is linked to a database that indicates the gene at each 
intercept location [112].

Oligonucleotide/DNA chips comprise silicon chips on 
which the “anchoring” oligonucleotide sequences are directly 
synthesized [88]. This silicon chips serve as the immobilized 
probes to which the complementary specific mRNA will 
hybridize. DNA chips can be produced with large density of 
gene arrays encoding up to 12,000 or more genes on a single 
chip [37]. 

The DNA microarrays technique has been utilized in the 
analysis and comparison of numerous tumor samples through 
the building of gene expression “fingerprints” databases and 
linking of specific patterns of expression to primary site of 
origin, prognosis and outcome of therapy [85,93].

Applications of Molecular Diagnostic 
Techniques

Prenatal Tests

Conventional prenatal tests involve the analysis of the 
number and appearance of chromosomes (the karyotype) 
[1]. Noninvasive prenatal testing using fetal DNA in maternal 
plasma has been adopted due to the presence of cell-free 
DNA in plasma [122]. The occurrence of mutation and 
inheritance patterns of diseases has given rise to prenatal 
diagnosis by use of direct or indirect methods of detection 
[97]. In direct mutation analysis, detection is highly accurate 
whereas in indirect mutation analysis, accuracy is dependent 
on the distance between DNA marker and disease locus 
(Tantravahi and Wheeler, 2003) [97]. This has been employed 
for chromosomal abnormalities such as Down Syndrome [1].
Infectious Diseases

Molecular diagnostics are used to identify infectious 
diseases such as chlamydia [102], influenza virus [28] and 
tuberculosis [78] or specific strains such as H1N1 virus 
[16]. FISH in combination with flow cytometry has been 
used for rapid culture independent detection of Salmonella 
spp. and in combination with PCR has been used for the 
accurate detection of Staphylococcus and Listeria spp. [106]. 
Genetic identification of infectious agents can be achieved 
as indicated in the diagnoses of malaria parasite by use of a 
loop-mediated isothermal amplification test [44]. However, 
despite these advances in genome analysis, infections are still 
more often identified by means of proteome, bacteriophage, or 
chromatographic profile [96]. Molecular diagnostics are also 
used to understand the specific strain of pathogens through the 
detection of drug resistance genes [96].
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Disease Risk Management

A patient’s genome may include an inherited or random 
mutation which affects the probability of developing a disease 
in the future [70]. For example, Lynch syndrome is a genetic 
disease that predisposes patients to colorectal and other cancers; 
early detection can lead to close monitoring that improves the 
patients’ chances of a good outcome [109]. Cardiovascular risk 
is indicated by biological markers and screening can measure 
the risk that a child will be born with a genetic disease such 
as Cystic fibrosis [91]. Genetic testing is ethically complex: 
patients may not want the stress of knowing their risk [4]. In 
countries without universal healthcare, a known risk may raise 
insurance premiums [45].

Ionizing Radiation (IR) induces numerous stable and 
unstable chromosomal aberrations. Unstable aberrations, 
where chromosome morphology is substantially compromised, 
can easily be identified by conventional chromosome 
staining techniques. FISH probes can be specific for whole 
chromosome(s) or precise sub-region on chromosome(s) [103]. 
The method not only allows visualization of stable aberrations, 
but it can also allow detection of the chromosome(s) or 
specific DNA sequence(s) involved in a particular aberration 
formation [80]. Two highly sensitive cytogenetics methods to 
identify inter-chromosomal stable aberrations that form in the 
bone marrow cells after exposure to total body irradiation are 
the multiple fluorescence in situ hybridization (mFISH) and 
spectral karyotyping (SKY). Although both techniques rely on 
fluorescent labeled DNA probes, the method of detection and 
the process of image acquisition of the fluorescent signals are 
different. The use of these two techniques have been adopted in 
research areas including radiation biology, cancer cytogenetics, 
retrospective radiation biodosimetry, clinical cytogenetics, 
evolutionary cytogenetics, and comparative cytogenetics [80]. 
Application of variable FISH techniques have been found 
to enhance the thorough interpretation of numerical and 
complex chromosome aberrations, bridging the gap between 
conventional chromosome banding analysis and molecular 
genetic DNA studies of risk factors [103].

Cancer

Cancer is a change in the cellular processes that cause 
a tumour to grow out of control [70]. Cancerous cells 
sometimes have mutations in oncogenes, such as KRAS and 
CTNNB1 (β-catenin) [68]. Analysing the molecular signature 
of cancerous cells (the DNA and its levels of expression via 
mRNA) enables physicians to characterize the cancer and to 
choose the best therapy for their patients [70]. In 2010, the 

incorporation of antibodies against specific protein marker 
molecules was developed and this could pave way for the 
development of multiplex assays that could measure many 
markers at a time [14]. Other biomarkers expressed in excessive 
nature in cancerous cells relative to in healthy ones include 
micro RNA molecules healthy ones [32]. The development 
of Molecular Diagnostics by Gliomas using next generation 
sequencing of a Glioma-Tailored Gene Panel has proved 
promising [123]. Expression levels from a collection of DNA 
samples can be used in predicting cancer. This is due to the vast 
number of genes expression level [93]. DNA microarray with 
the help of multiresolution analysis tool, Dual Tree M-Band 
Wavelet Transform (DTMBWT) for extraction at the 2nd level 
of decomposition and K-Nearest Neighbor (KNN) classifier, 
cancer classification into five different cancer datasets; Breast, 
Colon, Ovarian, CNS, and Leukemia with over 90% accuracy 
is now possible [93].

Drug Development

The utilization of DNA barcoding, microarray technology 
and sequencing for the elucidation of plant genetic diversity 
and conservation has proved promising in molecular biology 
[74]. They are proving to be useful in authenticating the 
medicinal plants for herbal drug preparations [87]. This has 
the potential not only to classify the known and yet unknown 
species but also has a promising future to link the medicinally 
important plants according to their known and unnoticed 
properties in a considerably less time than usual [87,80]. The 
newer trends utilized in DNA chips and barcoding have paved 
the way for a future with many different possibilities. This can 
assist us to cure many different diseases and will also generate 
novel opportunities in medicinal drug delivery and targeting 
[87].

Conclusion

Molecular diagnostics are changing every aspects of 
biological sciences. However, for each of these technologies, 
the additions to health care costs must be weighed against the 
potential advantages of more rapid diagnostics. The carrying 
out of well-controlled outcome studies are necessary to 
demonstrate the efficacy of these technologies. Furthermore, 
the classifications of neoplastic diseases by newer molecular 
techniques are expected to soon complement the currently 
familiar histology-based classification systems.
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